IPTV Traffic "Qcast": IP Multicast Traffic Monitoring System with IPFIX/PSAMP

Shingo Kashima and Atsushi Kobayashi

NTT Information Sharing Platform Laboratories
Outline

- Introduction
 - Motivation
 - IP Multicast Streaming Traffic

- Issues in Existing Multicast Monitoring

- Requirements
 - Requirements
 - Difficult Requirements for Current NetFlow
 - Why IPFIX/PSAMP?

- Our System: Qcast
 - System Overview
 - System Architecture
 - System Evaluation

- Conclusion
Motivation

- **Multicast service has started in several provider networks.**
 - Large number of broadband users leads to heavy demand for IP multicast streaming services, such as IPTV.

- **Existing multicast tools work, but not well enough to monitor streaming services in large-scale networks.**
 - Multicast ping, trace route, and multicast MIB.

- **Easy troubleshooting tools are required.**
 - IPFIX/PSAMP seems helpful.
IP Multicast Streaming Traffic

- Traffic volume of an IPTV channel: 10 Mbps, 0.9 kpps.
 - Packet size: from 1300 to 1400 bytes.
- IP multicast stream traffic includes two kinds of packets.
 - Media packets and FEC packets.
- IP multicast stream traffic includes RTP headers.
 - Packet loss can be easily detected by keeping track of RTP seq. number.
- More than 50 channels pass through an ISP network.
Issues in Existing Multicast Monitoring

- **Multicast ping and trace route**
 - Detect fault point and check continuity by using test packets.
 - Do not observe real packets.
 - Inadequate for detecting service quality deterioration and confirming service quality.

- **Mirroring + packet capture**
 - Last resort for confirming service quality.
 - But requires great care and is not suitable for always-on monitoring.
Requirements

- **Requirement #1: Detect service quality deterioration and confirm service quality.**
 - Detect packet loss, disorder, and duplicates within 1 minute while there is continuous packet loss at 1/1000.
 - Monitor packet delay variation.

- **Requirement #2: Perform always-on monitoring of traffic volume and service quality of each IPTV-channel and each customer.**
 - Always monitor per \{S,G\}.
 - Always monitor per VLAN in access network.

- **Requirement #3: Localize failure point.**
 - Localize failure point not only in a service suspension but also when service quality deterioration occurs.

- **Requirement #4: Use at low cost as soon as possible.**
 - Necessary because multicast streaming service has already started.
Difficult Requirements for Current NetFlow

- Requirement #1: For the current NetFlow exporter implementation, it is impractical to detect service quality deterioration and monitor service quality.
 - Flow records in NetFlow cannot include packet loss, disorder, and duplicates.
 - In general, many operators use random sampling to introduce NetFlow.

- IPFIX/PSAMP seems helpful in meeting this requirement.
Why I PFI X/ PSAMP?

- **PSAMP (RFC 5475)**
 - "Property Match Filtering" can focus the monitoring on IPTV traffic by selecting on the basis of packet header value.
 - "Systematic Time-based Sampling" can detect packet loss and packet interval time by selecting continuous packets.

- **IPFIX (RFC 5153)**
 - "Enterprise-specific Information Elements" can export not only UDP/IP header information but also application header information.
Our System: Qcast Overview

- **Probe:** Captures traffic from mirror port, monitors IPTV traffic with PSAMP, and exports with IPFIX.
 - Runs on a general-purpose personal computer.

- **Web-Console:** Collects IPFIX information and shows it to operators.
Topic 1: Packet Loss and Interval Time

- **Combination of PSAMP techniques in Probe**
 - Observe packets at input interface.
 - Select multicast packet by “Property Match Filtering”.
 - *Example: “Destination IPv6 Address == FF38::/16”*
 - Extract them using “Systematic Time-based Sampling”.
 - *All input packets during the interval period are selected.*

![Diagram showing observed packets, filtering, and time-based sampling](image)

- Check packet loss, disorder, and duplicates by keeping track of RTP seq. number.
- Check interval time by keeping track of receipt timestamp.
Topic 2: Exporting Traffic Data

IPv6 template
- **Flow key information**
 - Includes VLAN ID
- **Traffic volume information**
- **Packet loss information**
- **Interval time information**
 - Uses “Enterprise-specific Information Elements”

Option template

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Set ID (0x0003)</td>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Template ID (0x0106)</td>
<td>Field Count (0x0003)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Scope Field Count (0x0001)</td>
<td>exporterIPv4Address (0x0082)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Scope 1 Length (0x0004)</td>
<td>samplingTimeInterval (0x0133)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Field Length (0x0004)</td>
<td>samplingTimeSpace (0x012E)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Field Length (0x0004)</td>
<td>flowActiveTimeout (0x0024)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Field Length (0x0002)</td>
<td></td>
</tr>
</tbody>
</table>
```

```
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 0 | ENTERPRISE NUMBER (0x000000D2) |
| 4 | ENTERPRISE NUMBER (0x000000D2) |
| 8 | ENTERPRISE NUMBER (0x000000D2) |
| 12 | ENTERPRISE NUMBER (0x000000D2) |
| 16 | ENTERPRISE NUMBER (0x000000D2) |
| 20 | ENTERPRISE NUMBER (0x000000D2) |
| 24 | ENTERPRISE NUMBER (0x000000D2) |
```

IPv6 template details:
- **octetDeltaCount (0x0001)**
- **packetDeltaCount (0x0002)**
- **srcTransportPort (0x0007)**
- **dstTransportPort (0x000B)**
- **rtpIntervalVariance (0x8004)**
- **rtpIntervalAvgTime (0x8001)**
- **rtpIntervalMinTime (0x8003)**
- **rtpIntervalMaxTime (0x8002)**
- **rtpPayloadType (0x8005)**
- **dstIPv6Address (0x001C)**
- **srcIPv6Address (0x001B)**
- **flowStartMilliseconds (0x0098)**
- **flowEndMilliseconds (0x0099)**

IPv6 template flow key information:
- **Template ID (0x0103)**
- **Set ID (0x0003)**
- **Scope Field Count (0x0001)**
- **ExporterIPv4Address (0x0082)**
- **Scope 1 Length (0x0004)**
- **SamplingTimeInterval (0x0133)**
- **FlowLength (0x0004)**
- **SamplingTimeSpace (0x012E)**
- **FlowActiveTimeout (0x0024)**
- **Field Length (0x0002)**

IPv6 template traffic volume information:
- **PacketDeltaCount (0x0008)**
- **DropedPacketDeltaCount (0x0085)**

IPv6 template interval time information:
- **vlanId (0x003A)**
- **protocolIdentifier (0x0004)**
- **ipVersion (0x003C)**
- **RtpIntervalAvgTime (0x8001)**
- **RtpIntervalMinTime (0x8003)**
- **RtpIntervalMaxTime (0x8002)**

IPv6 template option template:
- **Scope Field Count (0x0001)**
- **ExporterIPv4Address (0x0082)**
- **Scope 1 Length (0x0004)**
- **SamplingTimeInterval (0x0133)**
- **FlowLength (0x0004)**
- **SamplingTimeSpace (0x012E)**
- **FlowActiveTimeout (0x0024)**
- **Field Length (0x0002)**

IPv6 template packet loss information:
- **PacketDeltaCount (0x0008)**
- **DropedPacketDeltaCount (0x0085)**

IPv6 template interval time information:
- **vlanId (0x003A)**
- **protocolIdentifier (0x0004)**
- **ipVersion (0x003C)**
- **RtpIntervalAvgTime (0x8001)**
- **RtpIntervalMinTime (0x8003)**
- **RtpIntervalMaxTime (0x8002)**

FloCon 2010 © 2009 NTT Information Sharing Platform Laboratories
Shows four kinds of traffic information:

- Traffic volume [bps], [pps]
- Loss packet [pps]
- Interval time [ms]
- Interval time variance [ms²]
Topic 3: View [2/6]

- Shows a traffic chart separated by RTP payload type.
 - {Media packets, FEC packets}

![Traffic Chart Diagram]

- Media packets [pps]
- FEC packets [pps]
- Media packets [bps]
- FEC packets [bps]
Topic 3: View [3/6]

- Shows packet loss alert
 - Two-level alert
 - Red: dangerous level
 - Yellow: warning level
 - Link to traffic chart

![Traffic chart and error notice image]
Topic 3: View [4/6]

- **Probe view**
 - When you select a probe from the Probe pull-down menu, the specified interface information is shown.

- **Channel view**
 - When you select \{S,G\} from the Channel Name pull-down menu, the specified IPTV-channel information is shown.
Topic 3: View [5/6]

- **Probe view**
 - Also shows traffic volume chart built up from all channels.
 - Useful for capacity planning.

```
{2404:1a8:ffff:fe00:2001::1, ff3e::8000:1}
{2404:1a8:ffff:fe00:2001::2, ff3e::8000:1}
{2404:1a8:ffff:fe00:2001::3, ff3e::8000:1}
```


Channel view

- Also localizes fault point by comparing traffic charts of multiple probes.

Core network

Access network

Channel Name: [2404:1a:ff:fe00:2001:1, fe80:8000:1]
Evaluation of Probe

- **Experimental assumptions:**
 - Packets of 20–100 IPTV channels pass through a probe.
 - Traffic volume of an IPTV channel: 10 Mbps, 0.9 kpps.
 - IPTV channel includes two kinds of packets (Media, FEC).
 - We evaluated the probe by varying the sampling interval period.
 - Sum of the sampling and spacing interval period was kept at a fixed value of 1000 ms.
 - Flow active timeout had a fixed value of 10 s.

- **Experimental environment:**
 - CPU: Core 2 Duo 2.0GHz, Memory: 3.5 GB, Interface: Intel 1GbE NIC, OS: CentOS 5.3
Experimental Results for Probe

- Exported flow number and packet loss rate obtained by changing the interval period from 100 to 999 ms.
- Performance had no limitation for interval period from 100 to 900 ms.

![Graph showing experimental results for probe]
Packet Loss Detection Probability

- We evaluated the detection probability for packet loss within the given monitoring interval \((n) \) by changing packet loss rate \((p) \) and sampling interval interval time \((d) \).

 - On the condition that \(n \) is 1 min and packet rate \((r) \) is 0.9 kpps, the experimental results are shown.

- Detection probability is almost 100% if the sampling interval period is 900 ms and packet loss is 1/1000 for over 1 min.

\[
1 - (1 - p)^{r n d / 1000}
\]
Evaluation of Web-Console

- **Experimental assumptions:**
 - IPFIX packets were input to a Web-Console.
 - A IPFIX packet includes 10 flow records.
 - We evaluated the Web-Console by varying the flow rate and number of flow.
 - Flow rate: 10-200 flow/sec (1-20 pps)
 - No. of flow: 200-1000 flow (20-100 packets)

- **Experimental environment:**
 - CPU: Xeon 3.6Hz, Memory: 3.5 GB, OS: CentOS 5.3, DB: PostgresSQL 8.37
Experimental Results for Web-Console

- We measure the number of inserted flow into traffic database in time by changing the following conditions:
 - No. of input flow from 2,000 to 10,000
 - Input flow rate from 10 to 200 flow/sec.

- The performance limit seems to be as follows:
 - 50 flow/sec: 9,000 flow
 - 100 flow/sec: 4,500 flow
 - 150 flow/sec: 4,000 flow
 - 200 flow/sec: 2,200 flow

- That is to say:
 - When flow active timeout is 180 sec, 90 probe (9,000 flow) is supported.
 - When flow active timeout is 45 sec, 45 probe (4,500 flow) is supported.
 - When flow active timeout is 26 sec, 40 probe (4,000 flow) is supported.
 - When flow active timeout is 11 sec, 22 probe (2,200 flow) is supported.
Summary

- We presented a new traffic monitoring method for IP multicast streaming services, such as IPTV, and the implemented system using IPFIX/PSAMP (Qcast).

- We showed the feasibility of the Qcast.
Thank you very much.

Please come and see our demonstration.

This study was supported by the Ministry of Internal Affairs and Communications of Japan.