Simplifying the configuration of flow monitoring probes

Xenofontas (Fontas) Dimitropoulos (xed@zurich.ibm.com)
Andreas Kind (ank@zurich.ibm.com)
Outline

- Background and motivation.
- Probe configuration architecture:
 - Requirements and goals.
 - Design.
 - Implementation.
- Future work and conclusions.
Network configuration

- Network elements are typically configured with low-level commands, e.g., Cisco IOS commands.

- Network administrators manage numerous network elements with lengthy configuration files.

- Network configuration is an error-prone and time-consuming process.

- Configuration errors can be costly, e.g.:
 - network outages
 - violations of SLAs
Probe configuration

- The configuration of monitoring probes is part of the more general network configuration problem.

- Monitoring probes are gradually becoming more intelligent, for example, using advanced sampling and data aggregation techniques. Consequently, their configuration becomes more involved.

- Flexible Netflow (FNF) and IPFIX provide numerous configuration options that were not available earlier:
 - FNF has 58 different configuration commands.
 - FNF provides 65 different fields, arbitrary combinations of which can be used in the definition of flow key and non-key fields.

- Certain network operation applications need to dynamically change configuration to:
 - adapt to changing traffic conditions.
 - investigate on-going network anomalies.
Configuration requirements

- traffic profiling
- billing
- anomaly detection
- application identification
- traffic engineering

network operation applications

data

network monitoring probes
Configuration requirements

- Probe configuration should:
 1. take into account application needs.
 2. be aware of the available monitoring probes.
 3. generate low-level configuration commands.
 4. configure or update the configuration of probes.
Probe configuration architecture

- Three modules:
 - the measurements module describes different measurements, i.e., application needs.
 - the inventory module describes the monitoring probes of a network.
 - the back-end module provides necessary information for generating low-level commands.

- The specification identifies application needs.
- The configurator:
 - uses the modules and specification to generate low-level commands.
 - configures the probes
Design goals for simplifying configuration

2. Objective-oriented configuration expression:
 - express configuration in terms of measurement objectives.
 - focus on measurements instead of devices.

4. Re-usability: make parts of configuration network-independent.

5. Extensibility: easily introduce support for new commands, measurements, etc.
Configuration abstraction hierarchy

- 1st level: vendor-specific configuration commands.
- 2nd level: probe elements (pe), i.e., logical components of a probe, like interface, flow cache, exporter.
- 3rd level: configlet, i.e., a set of specific probe elements that realizes a measurement.
- 4th level: measurement services, i.e., a configlet with certain probe selection rules.
Back-end module

- Specifies different probe elements.
- A probe element specification:
 - is written in XML.
 - has a unique id.
 - identifies parameters and parameter default values.
 - determines the low-level vendor-specific commands.

```xml
<pe id='generic_exporter'>
  <params>
    <param id='port'>90</param>
    <param id='transport'>udp</param>
    <param id='destination'>192.0.0.1</param>
    <param id='label'>EXPORTER</param>
  </params>

  <template>
    <ios>
      flow exporter $label
      destination $destination
      transport $transport $port
    </ios>
    <yaf>
      --out $destination --ipfix $transport --ipfix-port $port
    </yaf>
    <junos>
    </junos>
  </template>
</pe>
```
Inventory module

- Specifies network probes, i.e., lists the characteristics that can be useful for their configuration.

- Besides describing location, system, and interface information, it declares tags that can be used for grouping probes and for probe selection.

```xml
<probe id='trabant.zurich.ibm.com'>
  <address>9.4.68.154</address>

  <location>
    <city>Zurich</city>
    <state>Central CH</state>
    <country>Switzerland</country>
  </location>

  <system>
    <os>ios</os>
    <version>12.4</version>
  </system>

  <interface id='FastEthernet0/0'>
    <capacity>100Mbits</capacity>
    <tag>internal</tag>
  </interface>

  <interface id='FastEthernet0/1'>
    <capacity>100Mbits</capacity>
    <tag>customer</tag>
  </interface>

  <tags>
    <tag>edge</tag>
  </tags>
</probe>
```
Measurements module

<!-- Monitor how much traffic is sent -->
<!-- between IP blocks. -->
<msr id='traffic_matrix'>
 <params>
 <!-- Default parameter values -->
 <param id='collector_address'>localhost</param>
 <param id='collector_port'>2055</param>
 <param id='collector_transport'>tcp</param>
 </params>

 <!-- Probe element chain -->
 </configlet>
 </configlet>

 <rules>
 </rules>

</msr>
Measurements module
Measurements module

```xml
<rules>
  <interface>
    if ( $interface.tag eq "external" and $probe.tag eq "edge" ) {
      return 1;
    } else {
      return 0;
    }
  </interface>
</rules>
```
Input specification

- Lists the measurements and the probes in which to enable these measurements.

- Is the user interface and can be generated through a GUI.

```xml
<!-- Probes to apply measurements on -->
<probe id='wassen.zurich.ibm.com'></probe>
<probe id='trabant.zurich.ibm.com'></probe>

<!-- Measurements -->
<msr id='traffic_matrix'>
  <params> <!-- overwrite default values -->
    <param id='collector_address'>9.4.68.204</param>
    <param id='collector_port'>2055</param>
    <param id='collector_transport'>udp</param>
  </params>
</msr>

<msr id='app_monitoring'>
  <params> <!-- overwrite default values -->
    <param id='collector_address'>9.4.68.205</param>
    <param id='collector_port'>2055</param>
    <param id='collector_transport'>udp</param>
  </params>
</msr>
```
Design goals for simplifying configuration

2. Objective-oriented configuration expression:
 – express configuration in terms of measurement objectives.
 – focus on measurements instead of devices.

4. Re-usability: make parts of configuration network-independent.

5. Extensibility: easily introduce support for new commands, measurements, etc.
Conclusions

- Described an architecture for automating the configuration of flow monitoring probes.
 - Configuration abstraction.
 - Reuse configuration.
 - Extensibility.

- Future/on-going work:
 - Incorporate error-checking techniques.
 - Develop libraries for typical measurements.
 - Configuration optimization.
 - Use NetConf.