Detecting Malware P2P Traffic Using Network Flow and DNS Analysis

John Jerrim
FloCon 2013
• More malware using P2P protocols for command and control
• BotTrawler, a research tool for detecting and classifying P2P traffic
• Use of Protocol Transaction Analysis for detection of P2P protocols
• Detection of ZeroAccess and TDLv4 using PTA
• Examination of Zeus using swarm analytics
• Malware toolkits are including P2P as a means to avoid use of DNS for command and control. Examples include:
 – Zeus v3
 – TDL v4 (Alureon)
 – ZeroAccess
 – Thor (??)

• We have observed roughly a 10x increase in the number of malware samples using P2P in the past 12 months
• A network flow and analysis research system that fuses multiple data sources including:
 – YAF for flow creation and payload analysis
 – Associate DNS lookup with flows
 – Reverse DNS & Passive DNS for flows w/o DNS lookups
 – Geo-Location
 – Reputation
 • Public blacklists / spam lists
 • Private blacklists from DNS convictions
 – Binary file analysis

• Active research project, but some aspects are being weaponized at this time.
• Identify possible P2P flows and group into “P2P sessions”
• Create features for classification based on flow, session, and multi-session analysis
• Classify vs. known (labeled) P2P applications for both benign and malware P2P
 – If known, ignore or alert as appropriate
 – If unknown, cluster with other unknowns and test for suspect malware attributes
• Scalable for high speed analysis
• No payload analysis (it’s encrypted anyway)
• Robust Detection – High True Positive, Low False Positive
• Make detection avoidance expensive
 – Require a protocol change rather than a simple port change, for example
• Use features the enemy cannot easily control or manipulate
 – Swarm member characteristics are good features
 – Flow rates and periodicity (automation detection) may be useful but are weaker features
• Based on features created by examining the number of packets and payload exchanged between the local asset and the P2P swarm members via TCP and UDP
 – Highly repetitive transaction sequences are readily observable with P2P as there are hundreds (or more) connections (think “connection handshakes”)
 – Easily processed and clustered
 – Typically use 3 to 5 unique transaction sequences to identify a P2P application to handle different command/response sequences in the protocol
 – Some applications require multiple sets of transaction sequences for different behavioral aspects of the application
• Connections to external IP addresses
 – Focus on unique and rare connections
 – Repeated connections to external IPs
 – Avoid use of DNS

• Swarm analysis
 – Geographic dispersion
 – Session to session swarm overlap for same asset
 – Swarm overlap with other suspicious or malicious P2P from other assets
Possible Malware Attributes

• Swarm members often have other malware installed
 – % of swarm members on spam lists is generally significantly higher than the “noise level” of benign P2P swarms

• The geographic distribution of swarm members is generally different than benign P2P swarms

• Hybrid P2P applications
 – Hybrid uses a public network for resiliency and a private network as primary C&C
 • Menti (first observed January 2011) appears to be an example of a hybrid P2P: Uses both Tor and P2P
• Contextually associate P2P traffic with other malware behavior associated with the asset:
 – P2P traffic begins shortly after (often within seconds) of a suspicious file download
 – Other suspicious activity may also be noted starting near or after the compromise (differential asset behavior):
 • Spamming
 • ClickFraud Activity
 • DoS participation
• General Purpose P2P
 – BitTorrent
 – eMule
 – Tribbler
 – And many others...
• Specific Purpose P2P
 – Benign or commercial
 • Skype
 • Spotify
 • And many others
 – Malware
 • ZeroAccess
 • Zeus v3
 • TDL v4
 • And a few others
Specific Purpose P2P

- Are often easily identified by DNS, reverse DNS or passive DNS means as they generally do not try to hide – unless they are malicious
- Swarms are often small (< 100) with some or significant overlap of swarm members between P2P sessions
- Swarms may be highly localized. For example, Spotify uses minimal distance algorithms to reduce propagation delays
• All members of a malware P2P swarm have been compromised with the same malware
 – Detect one and you will quickly identify hundreds up to tens of thousands of compromised assets

• P2P Protocols are reused by malware operators. TDLv4 uses the identical P2P protocol as ZeroAccess
 – Identifying the technology and may identify the primary operator behind the malware, but may not identify the exact compromise
• A rapidly growing click-fraud botnet that uses significant user bandwidth
 – Over 2 million nodes estimated world-wide in November, 2012
 – Makes extensive use of P2P
 – Appears to be closely related to TDL v4 as it uses the same P2P protocol
Detecting TDLv4 and ZeroAccess

• Using PTA as primary detection mechanism
 – Created transaction sequence sets for three variants of the protocol as “labeled data” for the test
 – Simple decision tree for detection:
 • Sequences must be in the “top 5” for the P2P session
 • Three or more unique transaction sequences must be observed
 • Of the three, two must be bidirectional transaction sequences
 • Rank ordered detection is preferred for high confidence
• **182,097,625 P2P flows clustered into 132,015 P2P Sessions over a six day period**

 – 168,188 flows in 86 P2P sessions on 49 assets were identified as malware using P2P. All 49 assets were confirmed as infected by the customer (100% True Positive)

 – Transaction Sequence Statistics:

 • An average of 1955 labeled transaction sequences were observed for the P2P sessions classified as malware

 • An average of 1188 labeled bidirectional transaction sequences observed per malware P2P session

 • Only 909 labeled transaction sequences were observed in the remaining 131,992 P2P sessions – all unidirectional

 • There were zero(!) labeled bidirectional transactions observed in the 131,992 non-malware P2P sessions
Zeus v3 BotNet

• Zeus is a botnet focused on banking and financial theft. Use of P2P started early in 2012 when v3 was released.

• Provides a good example of repeated swarm membership for a period of time. Identical swarms have not been observed on benign P2P applications.

• There is a strong indicator of a download containing a list of new swarm members followed by changes in subsequent swarms.

• Swarm members exhibited significantly higher spam list rates than background noise.
Zeus Multi-Session Swarm Statistics

<table>
<thead>
<tr>
<th>Session Start</th>
<th>LastTime</th>
<th>IntPkts</th>
<th>IntPayload</th>
<th>ExtPkts</th>
<th>ExtPayload</th>
<th>New IPs</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/15/12 18:34</td>
<td>3/15/12 18:39</td>
<td>950</td>
<td>23912</td>
<td>905</td>
<td>12366</td>
<td>28</td>
<td>31</td>
</tr>
<tr>
<td>3/15/12 18:56</td>
<td>3/15/12 19:09</td>
<td>920</td>
<td>17310</td>
<td>901</td>
<td>8020</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>3/15/12 19:25</td>
<td>3/15/12 19:39</td>
<td>944</td>
<td>23532</td>
<td>871</td>
<td>8758</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>3/15/12 19:55</td>
<td>3/15/12 20:14</td>
<td>1623</td>
<td>26570</td>
<td>1570</td>
<td>8436</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>3/15/12 20:30</td>
<td>3/15/12 20:44</td>
<td>1022</td>
<td>36858</td>
<td>1213</td>
<td>136488</td>
<td>9</td>
<td>37</td>
</tr>
<tr>
<td>3/15/12 21:07</td>
<td>3/15/12 21:19</td>
<td>890</td>
<td>23240</td>
<td>829</td>
<td>7778</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>3/15/12 21:35</td>
<td>3/15/12 21:54</td>
<td>1780</td>
<td>26268</td>
<td>1744</td>
<td>8412</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>3/15/12 22:12</td>
<td>3/15/12 22:24</td>
<td>896</td>
<td>15542</td>
<td>888</td>
<td>9032</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>3/15/12 22:40</td>
<td>3/15/12 22:59</td>
<td>1724</td>
<td>29314</td>
<td>1648</td>
<td>7962</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>3/15/12 23:15</td>
<td>3/15/12 23:29</td>
<td>900</td>
<td>16298</td>
<td>867</td>
<td>6924</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>3/15/12 23:45</td>
<td>3/16/12 0:09</td>
<td>2762</td>
<td>72408</td>
<td>2884</td>
<td>162204</td>
<td>37</td>
<td>73</td>
</tr>
<tr>
<td>3/16/12 0:26</td>
<td>3/16/12 0:44</td>
<td>1812</td>
<td>35898</td>
<td>1726</td>
<td>9186</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>3/16/12 1:00</td>
<td>3/16/12 1:19</td>
<td>1820</td>
<td>29488</td>
<td>1966</td>
<td>102296</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>3/16/12 1:37</td>
<td>3/16/12 1:54</td>
<td>1744</td>
<td>27976</td>
<td>1665</td>
<td>8660</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>3/16/12 2:10</td>
<td>3/16/12 2:24</td>
<td>951</td>
<td>21502</td>
<td>898</td>
<td>7180</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>3/16/12 2:46</td>
<td>3/16/12 2:59</td>
<td>888</td>
<td>17254</td>
<td>1043</td>
<td>82294</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>3/16/12 3:16</td>
<td>3/16/12 3:29</td>
<td>966</td>
<td>31184</td>
<td>1128</td>
<td>117210</td>
<td>7</td>
<td>33</td>
</tr>
<tr>
<td>3/16/12 3:50</td>
<td>3/16/12 4:04</td>
<td>932</td>
<td>21334</td>
<td>1059</td>
<td>86596</td>
<td>0</td>
<td>28</td>
</tr>
</tbody>
</table>
• Identifying new P2P malware works best when intelligently fusing data from a broad range of data sources including network flow and derived features, DNS, binary analysis, swarm analysis, differential behavioral analysis, and reputation systems.

• PTA shows great promise for extracting new information from network flow data to aid in malware and application detection.

• Multi-session swarm analysis provides additional insight into how the botnet is being utilized.
Questions?

john.jerrim@damballa.com or on LinkedIn