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Anomalous traffic detection

• DDoS attacks, Network failure etc: can be detected as 
sudden change in traffic volume

• Worm scans or botnet C&C traffic: cannot be found as 
volume change
– Whose traffic volume is very small, and buried in normal traffic

• May be found as sudden change in traffic pattern, not 
volume

• Traffic pattern
– Entropy: can reveal traffic characteristic per hosts. 
– Communication pattern between hosts: can reveal anomalous 

traffic which appears as inter-hosts communication pattern
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P2P Botnet 
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Communication pattern between hosts

• Can be represented as graph
• Communication graphs for anomalous traffic

– Some of them are difficult to detect with conventional methods
• Conventional methods: monitoring entropies in number of flows, etc 
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Time series of communication graph
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Challenge
• How to detect anomaly (change) in time series of graph? 
• Visualization or animation of commutation graph[Yurcik06] 

– Useful especially for digging anomalous event by hand
– However, eyeballing by human operator is needed to detect anomalous 

event 
• Automated detection: need to define similarity between graphs 

S(Gt,Gt+1), where Gt and Gt+1 are graphs of time t and t+1
– Can judge as an anomaly if  S(Gt,Gt+1) suddenly decreases

t=0
t=1

t=2
t=3
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S(G2,G3) 

S(G1,G2) 

• [Yurcik06] William Yurcik, “VisFlowConnect-IP: A Link-Based Visualization of NetFlows for Security Monitoring,” 18th Annual 
FIRST Conference, June 2006.
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Similarities between graphs

• Graph Kernel
– Define “inner product” like function f(•, •), a.k.a kernel, on the space 

of non-linear spaces [Kashima03]
• Edit distance

– Number of operations to change graph G to G’ [Bunke06]
– operations: add/remove edges/nodes

• Can be used to detect anomalies in graph time-series
• Difficult to identify the source of anomaly  

• [Kashima03] H. Kashima, et.al , “Marginalized kernels between labeled graphs,” In Proc. ICML 2003, pp.321-328.
• [Bunke06] H. Bunke et.al, “Computer Network Monitoring and Abnormal Event Detection Using Graph Matching and Multidimensional 

Scaling, ” LNCS Vol. 4065 2006.



Linear feature space projection

• Linear feature space projection[Ide04]
– Mapping a graph to a vector in the linear space that represents 

the feature of the graph
• As feature vectors, adopt a principal eigenvector of 

adjacency matrix for the graph
– ≈Page Rank vector
– Dimension of linear space: Number of nodes in graphs
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Communication graph
Host1

Host2

Host3

• [Ide04] Tsuyoshi Ide and Hisashi Kashima: Eigenspace-based Anomaly Detection in Computer Systems, In Proc. 10th ACM 
SIGKDD Conference (KDD2004), Seattle, WA, USA, 2004.
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Anomaly detection using feature vector

Host1

Host2

Vector elements 
for Host3 Vector at time t

Vector at time t+1

Vector at time t+2

High similarities

Low similarities-> detected as anomaly

• Periodically generate communication graph from observed 
traffic data, and calculate feature vectors of the graphs

• Calculate similarity between the graph and the previous one

• Judge as anomaly if the similarity suddenly decreases

Cosine similarity



Compressing adjacency matrix

• In large communication graph, calculating principal eigen
vector of adjacency matrix may be difficult.

• Compress adjacency matrix by combining hash matrix  
and bloom filter
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Experimental results

• Observed data: packet capture data of 24-hour long at 
1Gbps link

• Use packets with ports 135/445(scans)/6667(IRC)
– Current python implementation cannot handle whole traffic
– Focus on botnet related traffic

• Generate graphs every minutes
• Hash matrix size：1280×1280
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Time series of simulates of feature 
vectors

• Several sudden decreases in similarities
• Try to find the source of anomaly for the first one
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Comparison of graphs before/after the 
anomaly

• By comparing graphs and/or vectors before/after the anomaly, we 
can identify the source of anomaly
• Comparing vectors is fit for automated identification   

• In this case: sudden large virus scan
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Evaluation with synthesized anomaly 
cluster

• Which type of anomaly 
and how large anomaly 
can be detected by the 
proposed method?

• Evaluation using 
synthesized anomaly can 
answer the above 
question

• Firstly, mesh cluster of 
various size is inserted to 
actual communication 
graph and calculate the 
similarity between the 
original graph 
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Evaluation with synthesized anomaly 
cluster

• With mesh size > 70, similarity decreases and the 
anomaly can be found
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Conclusion

• Summary 
– Propose a method to detect anomalies in 

communication graphs
• Projection of graph into linear feature spaces, and compare 

the simulates between feature vectors

– Evaluate using actual traffic data
• Found a sudden large worm scan

• Future works 
– Apply to other traffic data to find out which type of 

anomaly the proposed method can detect
– Faster implementation
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