Identifying Anomalous Traffic Using Delta Traffic

Tsuyoshi KONDOH and Keisuke ISHIBASHI
Information Sharing Platform Labs.
NTT

Flocon2008, January 7–10, 2008, Savannah GA
Outline

• Background and Motivation
 – Identifying anomalous traffic is the missing piece.

• Our Technique: DELTAA
 – Concepts
 1. Extract anomalous traffic as the delta of normal and anomalous time periods.
 2. Auto-aggregate extracted anomalous traffic.
 – Operation of our technique
 • How to implement the above concepts.

• Evaluation
 – Evaluation using synthesized DDoS traffic.

• Summary
Background and Motivation

- Monitoring of traffic volumes is widely used for network operation (e.g. MRTG).
- Many techniques for detecting anomalous volume change have been proposed (NBAD, Holt-winters in MRTG, … etc.).
- Some tools to mitigate damage from anomalous traffic. (e.g. drop/rate limit at router, detour to Cisco Guard, etc.)

- However, **accurate mitigation needs accurate ACL sets.**
- Generating accurate ACL sets requires manual drill down by operator.
 - **Too costly.**
Our Technique: DELTAA

- **DELTAA outputs ACL sets** for filtering or rate limiting to mitigate the damage from anomalous traffic.
 - DELTAA: Delta Traffic Automatic Aggregator

- **Three concepts of DELTAA:**
 1. Reveal anomalous traffic using delta traffic.
 2. Aggregate delta traffic and generate optimized ACL sets on a single dimension (e.g. source IP address dimension).
 3. Generate multi-dimensional ACL sets by integrating each dimensional anomalous traffic range.

Today, I will focus on two concepts
Concept #1:
(1) Definition of “Normal” and “Anomalous” Traffic

Throughout this presentation, I use the following definitions.

• **Anomalous traffic**: Traffic that causes a change in traffic volume (bps/pps/fps).
 – BitTorrent and server intrusion are out of scope because they always exist or do not cause a volume change.

• **Normal period**: Period when traffic volume is normal.

• **Anomalous period**: Period when traffic volume is anomalous.

Not stuck for the meantime. It looks like a signature of normal traffic.

Stuck! We want to know the cause and control it.
Concept #1:
(2) Reveal Anomalous Traffic

- Make two assumptions
 1. traffic of normal period = normal traffic
 2. traffic of anomalous period = normal traffic + anomalous traffic

- We can then extract anomalous traffic as the delta of the above two periods.

\[
\text{anomalous traffic} = \text{traffic of anomalous period} - \text{traffic of normal period}
\]

Extracting anomalous traffic from “traffic of anomalous period” is difficult because it is a mixture of normal and anomalous traffic.

Taking the delta between “traffic of normal period” and that of anomalous period, we can effectively extract anomalous traffic.
Concept #2: Auto-aggregate Delta Traffic

- In aggregation, **optimize a trade-off** (false negative, false positive, number of ACLs) by using the best range-selection algorithm.
- Aggregation example: Aggregate from distinct source IP addresses to address range sets.

Example 1
ACL sets for covering all anomalous traffic

- **ACL(1)** will filter out normal traffic, as a false positive.
- **ACL(2)**
- **ACL(3)**

Example 2
Splitting ACL range to avoid collateral damage

Better range selection
Explanation of Our Technique

- Our technique can generate multi-dimensional ACL sets.
 - e.g. source/destination IP address, source/destination port, protocol, flow exporter, and router interface
 - Multiple dimensions do not mean independent of above information sets.
 - Our technique merges above information to make multi-dimensional ACL sets.

- In this presentation, I focus on source IP dimension identification as an example and explain step by step.
Step 1: (1) Counting Up

Count normal and anomalous periods of traffic for each source IP address.

![Graph showing normal and anomalous traffic periods for source IP 0.0.0.0 and 255.255.255.255.]

- **Normal period**: 600 Mbps
- **Anomalous period**: 1 Gbps

Count traffic volume for each source IP address.
Step 1: (2) Making Delta Traffic

Make delta traffic by subtracting traffic of normal period from that of anomalous period.

DELTA obtains anomalous traffic with granularity of source address as delta traffic.

Normal period = 600 Mbps
src_ip 0.0.0.0

Anomalous period = 1 Gbps
bps

Subtract for each source IP address.

Anomalous traffic = 400 Mbps

255.255.255.255
Step 2: (1) Building Tree of Normal and Anomalous Traffic

- Example: When we use only anomalous traffic information, collateral damage cannot be avoided.
 - Causes mis-filtering of normal traffic.
- So, build a traffic tree using both normal and anomalous traffic.
Step 2: (2) Building Tree of Normal and Anomalous Traffic

- **Traffic tree making**
 - Build up from individual source IP addresses (depth=32).
 - Each node has information about coverage and collateral ratio.
 - **Collateral ratio**: normal traffic of the node ÷ total normal traffic
 - **Coverage ratio**: anomalous traffic of the node ÷ total anomalous traffic
 - Make parent nodes by merging child node information.
Step 3: Selecting Best Node Sets (ACL sets)

1. To reduce search space, delete unnecessary nodes.
 - Unnecessary node: node having little coverage ratio (little anomalous traffic)
 or little difference from its descendant nodes.
2. Search for best node sets by evaluating goodness of every node combination.
 - Best node combination = **Best ACL sets for source IP dimension**
 - But, how to decide goodness of the node sets?

Example 1
Best node sets: Can filter almost all anomalous traffic with little collateral

- **ACL(1)=0.0.0.0/3**
 - cov=12.5, col=5
- **ACL(2)=64.0.0.0/2**
 - cov=25.5, col=5
- **ACL(3)=192.0.0.0/3**
 - cov=50, col=5

Example 2
Can cover limited anomalous traffic, but must aggregate to /3

Example 3
Better: Can cover all anomalous traffic, but some collateral

Example 4
- Delete unnecessary nodes having little coverage ratio.
Criteria of “Goodness”

- Three criteria of identification
 1. Coverage ratio:
 Maximize filtered anomalous traffic = \(1 – FNR\)
 2. Collateral (damage) ratio:
 Minimize filtered (normal) legitimate traffic = \(FPR\)
 3. Number of ACLs:
 ACL entry budget is limited, so having few ACLs is better.

- But, these three criteria have a trade-off relationship with each other.
Evaluation Formula for Goodness

• To evaluate goodness of best ACL sets, we use the formula:

 \[
 \text{rate} = \left(\frac{\beta - \alpha}{\alpha} \right) + \alpha \cdot \text{cov} - \beta \cdot \text{coll} \quad \text{rate} = \frac{1}{n^\gamma}
 \]

 \(\alpha, \beta, \gamma\) : weighting coefficients

 – Weighting coefficients can be tuned to reflect network policy or customer requirements.

ACL sets for covering all anomalous traffic

rate= 2.61
coverage=100%, collateral=30%, no. of ACLs=2

Example ACL splitting
rate= 3.18
coverage=95%, collateral=10%, no. of ACLs=3
Evaluation and Results: Test Data Set

- **Normal traffic**: publicly available traffic data captured on transpacific line (100 Mbps)
- **Anomalous traffic**: injected synthesized DDoS attack traffic
 - Mimic large DDoS attack
 - We choose source/destination addresses that have large normal traffic because simple identification would cause collateral.
 - Destination: Popular server appeared in normal traffic
 - Source: Choose IP address blocks (/16) from which volume of normal traffic to the destination is largest.
 - Port numbers and protocol of attack traffic are the same as those of normal traffic.

![Graph](image-url)
Evaluation and Results: Results (1)

- Results: We get four ACL sets with below conditions
 - coverage: 93.75%
 - collateral: 0.00%
 - no. of ACL sets: 4
Evaluation and Results: Results (2) OUTPUT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>basetime_len</td>
<td>60.0 (sec) : (1168362060.0 - 1168362120.0)</td>
</tr>
<tr>
<td>anomaltime_len</td>
<td>60.0 (sec) : (1168362180.0 - 1168362240.0)</td>
</tr>
<tr>
<td>base_total_bps</td>
<td>89,121,539.5</td>
</tr>
<tr>
<td>anomal_total_bps</td>
<td>137,729,812.7</td>
</tr>
<tr>
<td>diff_total_bps</td>
<td>48,608,273.2 +54.5 %</td>
</tr>
</tbody>
</table>

1-D_OUTPUT:

- **PROTOCOL= 6**
 - coverage: 100.42 collateral: 95.52
- **SRC_PORT= high**
 - coverage: 108.27 collateral: 33.42
- **DST_PORT= high**
 - coverage: 100.09 collateral: 96.40
- **SRC_IP**
 - 119.170.0.0/17 coverage: 51.43 collateral: 0.00
 - 119.170.128.0/18 coverage: 25.72 collateral: 0.00
 - 119.170.192.0/19 coverage: 12.86 collateral: 0.00
 - 119.170.240.0/20 coverage: 6.43 collateral: 0.00
- **DST_IP**
 - 134.45.182.70/32 coverage: 102.93 collateral: 2.17

MULTI-DIMENSION_FLOW_OUTPUT

- **flowID_0**: cov= 51.43 col= 0.00, 119.170.0.0/17 134.45.182.70/32, 6 high high
- **flowID_1**: cov= 25.72 col= 0.00, 119.170.128.0/18 134.45.182.70/32, 6 high high
- **flowID_2**: cov= 12.86 col= 0.00, 119.170.192.0/19 134.45.182.70/32, 6 high high
- **flowID_3**: cov= 6.43 col= 0.00, 119.170.240.0/20 134.45.182.70/32, 6 high high
Evaluation and Results (3): Destination IP Tree

1-D_OUTPUT: DST_IP
134.45.182.70/32

coverage = 102.93 collateral = 2.17

Not chosen because coverage is slightly less than collateral ratio. If this node were chosen, the evaluation rate would fall.

Choose this node for output because there is no significant change between it and upper nodes in coverage, and its collateral ratio is smaller.
Evaluation and Results (4): Source IP Tree

1-D_OUTPUT: SRC_IP

<table>
<thead>
<tr>
<th></th>
<th>SRC_IP</th>
<th>coverage</th>
<th>collateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>119.170.0.0/17</td>
<td>96.43</td>
<td>0.00</td>
</tr>
<tr>
<td>(2)</td>
<td>119.170.128.0/18</td>
<td>51.43</td>
<td>0.00</td>
</tr>
<tr>
<td>(3)</td>
<td>119.170.192.0/19</td>
<td>25.72</td>
<td>0.00</td>
</tr>
<tr>
<td>(4)</td>
<td>119.170.240.0/20</td>
<td>12.86</td>
<td>0.00</td>
</tr>
</tbody>
</table>

This range (/20) includes all normal traffic. If you choose this range, collateral damage will occur.

There are fewer specific nodes than /21 because their coverage is less than 5%.

Whole range of synthesized anomalous traffic

This range (/20) includes all normal traffic. If you choose this range, collateral damage will occur.
Summary

• Revealed three criteria of optimal ACL sets.
 – for mitigating DDoS attacks on router
• Proposed DELTAA technique: Optimizes trade-off among the these criteria, using normal and anomalous traffic.
• Showed effectiveness of DELTAA.
 – Evaluation results using prototype and synthesized data sets:
 • coverage: 93.75%
 • collateral: 0.00%
 • no. of ACL sets: 4

![Graph showing evaluation results](image)
Thank you.

Any questions are welcome.

This study was supported by the Ministry of Internal Affairs and Communications of Japan.