IP Flow Information eXport (IPFIX)

elisa.boschi@hitachi-eu.com
{boschi, zseby, mark, hirsch}@fokus.fraunhofer.de
Outline

• IPFIX
• Terminology
• Applicability
• Initial Goals
• Current Status
 – Rough consensus (Internet-Drafts and RFCs)
 – Running code (Implementations)
• Conclusions
IP Flow Information eXport

- General data transport protocol
- Flexible flow key (selection)
- Flexible flow export - TEMPLATE BASED
 - New fields can be added to flow records without changing the structure of the record format
 - The collector can always interpret flow records
 - external data format description → compact encoding

- Efficient data representation
 - Extensible (future attributes to be added)
 - Flexible (customisable)
 - Independent (of the Transport protocol)
Terminology

• A TEMPLATE is an ordered sequence of \(<\text{type},\text{length}>\) pairs
 – specify the structure and semantics of a particular set of information (Information Elements)

• DATA RECORDS contain values of parameters specified in a template record

• OPTION RECORDS define the
 – structure and interpretation of a data record
 – how to scope the applicability
The protocol

- Unidirectional (push mode)
- The exporter sends data (and option) templates
 - Information Elements descriptions
- Information Elements are sent in network byte order
Applicability

• Target applications requiring flow-based IP traffic measurements (RFC 3917)
 – Usage-based accounting
 – Traffic profiling
 – Attack/intrusion detection
 – QoS monitoring
 – Traffic engineering

• Other applications (AS):
 – Network planning
 – Peering agreements
Attack / intrusion detection

• IPFIX provides input to attack / intrusion detection functions:
 – Unusually high loads
 – Number of flows
 – Number of packets of a specific type
 – Flow volume
 – Source and destination address
 – Start time of flows
 – TCP flags
 – Application ports
Define the notion of a "standard IP flow"

A **Flow** is a set of IP packets passing an Observation Point in the network during a certain time interval. All packets belonging to a particular flow have a set of common properties defined as the result of applying a function to the values of:

- One or more packet header field (e.g. dest. IP address), transport header field (e.g. dest. port number), or application header field (e.g. RTP header fields RTP-HDRF)
- One or more characteristics of the packet itself (e.g. # of MPLS labels)
- One or more fields derived from packet treatment (e.g. next hop IP address)
Initial Goals 2/4

• Devise data encodings that support analysis of IPv4 and IPv6 unicast and multicast flows…
 – IPFIX Information Model
 • formal description of IPFIX information elements (fields), their name, type and additional semantic information

• Consider the notion of IP flow information export based upon packet sampling
 – The flow definition includes packets selected by a sampling mechanism
 – Through option templates, the configuration sampling parameters can be reported
Initial Goals 3/4

• Identify and address any security concerns affecting flow data.
 – Disclosure of flow info data
 – Confidentiality \rightarrow IPSec and TLS
 – Forgery of flow records
 – Authentication and integrity \rightarrow IPSec and TLS

• Specify the transport mapping for carrying IP flow information \rightarrow SCTP / SCTP-PR
 – Reliable (or partially reliable)
 – Congestion aware
 – Simpler state machine than TCP
Initial Goals 4/4

• **Ensure that the flow export system is reliable** (minimize the likelihood of flow data being lost and to accurately report such loss if it occurs).

 – SCTP, TCP
 – UDP
 • Templates are resent at a regular time interval

 – Sequence numbers
Current status

• Internet-Drafts (~ sent to the IESG):
 – Architecture for IP Flow Information Export
 – Information Model for IP Flow Information Export
 – IPFIX Protocol Specification
 – IPFIX Applicability

• Request For Comments:
 – Requirements for IP Flow Information Export (RFC 3917)
 – Evaluation of Candidate Protocols for IP Flow Information Export (IPFIX) (RFC 3955)
Other related drafts

- Export of per packet information with IPFIX
 - E.Boschi, L.Mark draft-boschi-export-perpktinfo-00.txt
- IPFIX aggregation
 - F.Dressler, C.Sommer, G.Munz draft-dressler-ipfix-aggregation-01.txt
- Simple IPFIX Files for Persistent Storage
 - B.Trammell draft-trammell-ipfix-file-00.txt
- IPFIX templates for common ISP usage
 - E.Stephan, E. Moureau draft-stephan-isp-templates-00.txt
- IPFIX Protocol Specifications for Billing
 - B.Claise, P.Aitken, R.Stewart draft-bclaise-ipfix-reliability-00.txt
- IPFIX Implementation Guidelines
At least 6 different IPFIX implementations
- Ours is open source: http://www.6qm.org/downloads.php

Implementers mailing list

Interoperability events
- Further tests planned

Implementation guidelines in preparation
Conclusions

• IPFIX is the upcoming standard for (IP) flow information export
• Allows common analysis tools
• Data exchange

... questions?
IPFIX message format

- IPFIX message
 - message header
 - 1 or more \{template, option template, data\} sets

- A TEMPLATE is an ordered sequence of <type, length> pairs used to completely specify the structure and semantics of a particular set of information
 - (unique by means of a template ID)
 - DATA RECORDS contain values of parameters specified in a template record
 - Field values are encoded according to their data type specified in IPFIX-INFO
 - OPTION RECORDS define the structure and interpretation of a data record including how to scope the applicability
INFORMATION ELEMENTS

• INFORMATION ELEMENTS are descriptions of attributes which may appear in an IPFIX record
 – IANA assigned
 – Defined in the Information Model
 – Enterprise specific (proprietary I.E.)

• Variable Length I.E.
 – The length is carried in the information element content itself

• The type associated with an IE
 – indicates constraints on what it may contains
 – determines the valid encoding mechanisms for use in IPFIX

• I.E.s must be sent in network byte order (big endian)
INFORMATION ELEMENTS

- The elements are grouped into 9 groups according to their semantics and their applicability:

1. Identifiers
2. Metering and Exporting Process Properties
3. IP Header Fields
4. Transport Header Fields
5. Sub-IP Header Fields
6. Derived Packet Properties
7. Min/Max Flow Properties
8. Flow Time Stamps
9. Per-Flow Counters
10. Miscellaneous Flow Properties

{can serve as Flow Keys
(used for mapping packets to Flows)}
Requirements for the data model

• IPFIX is intended to be deployed in high speed routers and to be used for exporting at high flow rates

• Efficiency of data representation
• How data is represented = data model

• EXTENSIBLE
 – For future attributes to be added

• FLEXIBLE
 – Concerning the attributes (customisable)

• INDEPENDENT
 – Of the transport protocol